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THE SOLUTION OF NONLINEAR BOUNDARY VALUE PROBLEM IN
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Abstract. In this paper we consider the problem of finding the speed of solitary waves in
saturated porous media. The problem of propagation of solitary waves is reduced to the
solution of the boundary value problem in unbounded domain. For such problems
boundary conditions are specified in infinity. In the first approximation for the dispersion
equation the velocity of the stationary running linear waves is obtained, in the second
approximation solution of the nonlinear evolution equations is derived. The first equation
is solved as a system of linear algebraic equations. To solve the second equation quasi-
uniform grid is constructed, covering the spatial domain and difference schemes are
received for the numerical solution of the equations describing the propagation of
nonlinear waves.
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1. Introduction

The mathematically posed problem for one-dimensional and isothermic case is led
to the solution of the mass and momentum conservation equation [1]

o(a;pi) +5(aiPiUi)

p P =0, +a, =1, 1)
a(aipil‘)i) + a(aipil‘)iui) =5li a_o-+ai @_(_J)i R]_z, (2)
ot OX OX OX

We take the connection between stress and deformation of solid phase in
the form [1]

(bo + gbl D—I)(O' +)P)= (ao + IZ::al DD—tIIJel, (3)

Dt'

The system of equations (1)-(3) is completed by the thermodynamic equation
of phase states
pr=pi(01,P),  p=p,(P), (4)
The parameters of solid and fluid phases are denoted here by indices 1 and
2, respectively. The portion of volume occupied by solid phase is equal to «,,
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fluid phase — to «,, the density of substance in different phases is equal to p, and
p,, rates are vy, v,, o=a,(C-P), P is pressure in the fluid phase, I is the true

stress in the solid phase, &;- is a unit tensor, ¢ is an initial value of a;

y=p£K; g, and K are the coefficients of isothermic compressibility of solid
particles and all solid phase as a whole.
The constant coefficients by,b,,...,b,;a,,a,,...,a, are defined from the

concrete elastico-viscous models. We can give the force of interfacial resistance
in the form [1]

R,=(, —0v)f qu —51‘)= K, (v, —0y)+ K b(v, — UJL_)Z —51‘ . (5)
The domains of correctness of law (5) and linear connection (when b =0)
are defined by the Reynolds inner number Re =ulp, /v = (p, /vaz —Bl\,/k/az and

its critical value Re,, after that the linear connection get broken, where v is the

dynamic fluid viscosity, k is a permeability coefficient of the porous medium.
Formula (5) can be represented in a more convenient form

R, = ((/)(Re))(vaz /k152 —51‘ .
The values of the function ¢(Re) for different porous media have been given
in [1]. The equations (1)-(4) are completed by the following kinematic relation

a o oox x|
Using the length and time rescaling [2]

%+ oev,  Ou, 6)

X=mnx, t=t-c?x (7

we rewrite the system of equations (1)-(6) in new variables

oaip;) +na(aipiui) et d(aipivr) 0, (8)
or oX or
oaipivy) | Olaipiviv;) 4 0aipiviv;)
+n —C =
ot oX ot )
oo . Oo oP 4 OP i
=0y ——C 0y —+na, ——C a; ——(-1)'Ry,,
il P 1i or ne; oX a; or ( ) 12

42



N.V. BAYRAMOVA: THE SOLUTION OF NONLINEAR BOUNDARY ...

{b +3D, H(ar+7701 a‘j( C_lul%Jq}(oJr;,p):

=1 g=1 0
q (10)
no (9 I
=, + 2. [[| =—+nv, — —c"v, — | (€,
{" E'g(ar T % 1ar)}
oe, aelul_c,1 aelvlzn%—c’l% ’ (11)

ar oX or oX ot

We represent the desired variables in the form of series in small parameter
n<<1

cna? +pa

a, =af’ +naf +n’af’

+..

’ 12
pl—pl(o)+77(Dlal+LlP1)+ (12)
+7%(Dy0, + LiP, + D07 + Doy P+ L,P2) +...;

P2 =py) +1BPy +772(8le +B,P) 4.

v, =nol +7721)(2)+ o

where

_1 o’p,

_0p,
Bl—_ ’ 2_5 apz .

P,

_op

_op
b =
P [,

s U =
00|,

(13)
1 o’ py
2 0P? |

_1 o’ py
2 062

_ a2/91
L dooP

2 = 2

(Po.00)

where «”,P, and o, are the values of concentration, pressure and effective
stress in the fixed two-phase continuum »® =p{® =0.

The substitution of expansions (12) into system of equations (8)-(11) and
equaling the coefficients of members with the same degrees » at the first
approximation is led to the system of homogeneous equations

(0)

& ®

Doy + o OLP + pPa® —c a0 p00® =0

1
pz aé)

o pO0® +c o+ ¢ VP, =0 (14)

a2 p2 U§1)+C a(O)P 0

+aPBPR -l pPul =0

by(oy+P) =a,8, , & +al? =0, e =—c .
The system (14) has a nontrivial solution if its determinant vanishes, that
gives the following dispersion equation with respect to the velocity of linear
waves C
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ol? p"lol” o (D) + "B+
B e L L )
+af? o0 (ef” {7y 2By e* ~—af? %% =0.

Equation (15) has a pair of roots corresponding to propagation of
longitudinal waves in solid and fluid phases [1].

From (14) subsequently we substitute the desired variables through the rate
of the solid phase v in which it is at the second approximation

e, =—c Y,
b d o0 B | R
' P be? JaD -yt P’
@)
—cq 0,0 ! !
o, =Ca, 'p |y — , 16
1 1 M1 [ bochal(o)_]/ (16)

2
W__0_a1,0| 0,0 _ J 1+c'B, (1)
a,’ =—a,” =C o o, P — V.
2 1 2 ( 1 1 b0C2 go)( 1(0) _ 7/) 1

2. Quasi-uniform grid and approximation of initial boundary
value problem

As we have already noted, the replacement of an infinite domain finite gives
low accuracy. Therefore, here we will use a quasi-uniform grid [4]. Suppose that
T =T(&)a strictly monotone function defined on [-1, 1], for which

imT()=-0 . limT(&)=+»

E—>-1 sl

An example of such functions T(f):tg(%f] can be taken. Let’s take the

nodal points &, = % rae —N <n<N, whereN is a natural number, and nis a

whole number. It is clear that & , =-1, &, =1. Consider the grid

o, ={T(§n), 3 =%, Y £n<N}.

These are called a quasi-uniform grid in (—oo; + o)

T, =T(§n)=tg(”—§”j-
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An example of such a network on the line is the so-called tangential grid

with the nodal points
T
Tn :T(gn):tg( gnj

As in [3] a grid approximation of derivatives on an infinite field of quasi-
uniform grid is given. In this case, for derivatives I and Il order obtain

6_0 ~ UI’H—l - Un , (17)
or N+t Tn+1 _Tn
822 ~ 2 Up — U, _ Uy, Uy, . (18)
or n Xn ~ Xna Tn+1 _Tn Tn _Tnfl

And for the approximation of the derivative of the third order will have

(Gguj _ 1 {(820j (620J ] 19)
3 ~ 2 o 2 .
ar n+% T”+1 B Tn ar n+1 ar n

Note that these approximations when n= N —1 are unsuitable because the
denominator we obtain in this case, to set correct boundary conditions is not
possible. Therefore it is necessary to build an approximation, which does not
contain a nodal point T, but has v, . To do this, instead of formulas (11)-(13)

can be as in [3] to approximate fractional derivatives nodal points. Then, instead
of (11) - (13) we have

(8_1)) v CnaTUn 20)
oT )1
Z[T T J
n+y n+=
2
Cvl ot (o) () | (21)
otz ) T1 -7 |\er ), loT),
> n—> 2 2
Pv 1 v (o'
aTs n+1 T 3_T 1 6T2 Nl 8T2 n ,
2 e A
(22)

~ = , (23)
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yrd n
X, T ): X =k*I,T, =t g =,

n=-N,..,-101...,N

itk v\ o%v ‘ o%v ‘
K K Kl K
%:Un (Ej = R,uy + Boglog |+ RZAZ[_GTZJ - RsA{_ﬁTSJ . (24)

n+=
2

n

Here

(26)

e 2 2
2

T ,-T \\or )2 (oT),2
n 2

SR SN 7 g
T 3_T 1 ar n+E ar n+}
3
4

k k k k
_ 1 1 Uni2 ~bnu _ Unit ~Un s (27)

T4-T,
2T =T || ™ ™y 2T ;-T 5| 2T 4-T 4
n+> s nH—  n+s > s
4 4 4 4 4 4) ]

T 1_T 1 )
n+§ n_E 2T 1_T 3 2T 5_T 7
n—-— n—— n—-— n—-—
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k+1 k k k
—U, k Uhy — U k k| k
n n n+l n
| =0, —-Ru, +Buo, oy |+
2T ,-T ,
n+> n+=
4 4
k k k k
1 Uny1 — Uy _ Uph =V

-R A3 1 1 Url1<+2 _Ur:(ﬁ-l _ U|l1<+l_url1<
: T T
AT =T || w3 wd|2T ,-T | 2T ,-T,
n+> n+= n+— n+=- n+> n+=
4 4 4
_ 1 Ur:( _Urz(—l _ Url:—l Ur:(-z
T - 1
Nt Ny 2T ,-T 4 2T -T 4
-= n-- n-= n——
4 4 4 4

And so the following equation

k k
it =0k +lof . ko, —IR,0f +IBvfjof|+
Z[T 3 =1 1}
n+> n+=
4 4
k k K ok
+ |R2A2 1 Ung — Uy _ Uy —Up, _
Z[T T J Z[T -1 ] Z(T = J
n+= n-= n+= n+= n—-= n—-=
2/ 4 4 ]
“IR.A 1 1 UrIT+2 _Urlu(+1 Urlf+1 _Url1< _
T s =T [T 5-T 4
My M| " 2T =T o 2T T
n+z n+Z n+Z n+Z
3 1 Ur:( _Urlf_l _ Urlf—l _Url:—z
T ,-T '
"2 "2 2 Tn—1 _Tn—3 2 Tn—s _Tn—7
4 4 4 4) |

~N+2<n<N-2, k=04,.. (28)

where
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(0) 2
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0) 5(0) ,(0)
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For sand medium we have

M =5,L=6,n=88m=8, p{¥ =262, p{” =100,
E, =10% E,=10°,E.=10",0=10"*,6, =102,
B, =3*10" B, =4,4*10"° M, =10",M, =10°,
a{® =0.0L,a” =0.99,b, =1,a, =10,y =0.2,
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K, =5*10°, L, = —p{” * 4/3,D; = —p{” * i 1(3* (1 - 1)),
B,=-p”*4,B,=0D, =0,L,=0,D, =0,
A =-E*0-E*0,A=—-(E+E)*0*0. - M,,

h=2*M/nl=L/mT,=-M,T,,=M,X,=0,X,,, =L

m+1

which was considered in [5,6].
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