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Abstract.  In this paper we consider the problem of finding the speed of solitary waves in 

saturated porous media. The problem of propagation of solitary waves is reduced to the 

solution of the boundary value problem in unbounded domain. For such problems 

boundary conditions are specified in infinity. In the first approximation for the dispersion 

equation the velocity of the stationary running linear waves is obtained, in the second 

approximation solution of the nonlinear evolution equations is derived. The first equation 

is solved as a system of linear algebraic equations. To solve the second equation quasi-

uniform grid is constructed, covering the spatial domain and difference schemes are 

received for the numerical solution of the equations describing the propagation of 

nonlinear waves.  

Keywords: Solutary waves, nonlinear equations, unbounded domain, a quasi-uniform 

grid, difference schemes. 

 

AMS Subject Classification:  35Q51, 37K40. 

 
 

 

1.    Introduction 

 

The mathematically posed problem for one-dimensional and isothermic case is led 

to the solution of the mass and momentum conservation equation [1] 
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  We take the connection between stress and deformation of solid phase in 

the form [1]              
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The system of equations (1)-(3) is completed by the thermodynamic equation 

of phase states 

)(),,( 22111 PP   ,                                    (4) 

The parameters of solid and fluid phases are denoted here by indices 1 and 

2, respectively. The portion of volume occupied by solid phase is equal to 1 , 
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fluid phase – to 2 , the density of substance in different phases is equal to 1  and 

2 , rates are 
21,  ,  P 1 , P  is pressure in the fluid phase,   is the true 

stress in the solid phase, ij - is a unit tensor, )0(

1  is an initial value of 1 ; 

;1K   
1  and K  are the coefficients of isothermic compressibility of solid 

particles and all solid phase as a whole. 

  The constant coefficients 
nm aaabbb ,...,,;,...,, 1010
 are defined from the 

concrete elastico-viscous models.   We can give the force of interfacial resistance 

in the form [1]                 

 

        121212121212    bKKfR .                   (5) 

 The domains of correctness of law (5) and linear connection (when 0b ) 

are defined by the Reynolds inner number   21222 ///Re  kul   and 

its critical value krRe after that the linear connection get broken, where   is the 

dynamic fluid viscosity, k  is a permeability coefficient of the porous medium. 

 Formula (5) can be represented in a more convenient form 

 

    12212 /Re   kR . 

The values of the function  Re  for different porous media have been given 

in [1]. The equations (1)-(4) are completed by the following kinematic relation 
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Using the length and time rescaling [2]                                                   

 

xctxX 1,                                           (7) 

 

we rewrite the system of equations (1)-(6) in new variables  
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We represent the desired variables in the form of series in small parameter 
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where                  
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where 0

)0(

1 , P  and 0  are the values of concentration, pressure and effective 

stress in the fixed two-phase continuum 0)0(

2

)0(

1  . 

The substitution of expansions (12) into system of equations (8)-(11) and 

equaling the coefficients of members with the same degrees   at the first 

approximation is led to the system of homogeneous equations 
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The system (14) has a nontrivial solution if its determinant vanishes, that 

gives the following dispersion equation with respect to the velocity of linear 

waves c  
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Equation (15) has a pair of roots corresponding to propagation of 

longitudinal waves in solid and fluid phases [1]. 

From (14) subsequently we substitute the desired variables through the rate 

of the solid phase  1

1  in which it is at the second approximation  
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2.     Quasi-uniform grid and approximation of initial boundary  

value problem 

 

As we have already noted, the replacement of an infinite domain finite gives 

low accuracy. Therefore, here we will use a quasi-uniform grid [4]. Suppose that 

 TT  a strictly monotone function defined on [ 1,1 ], for which 
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An example of such functions   









2


 tgT can be taken.  Let’s take the 

nodal points 
N

n
n  , где NnN  , where N is a natural number, and n is a 

whole number. It is clear that 1,1  NN  . Consider the grid 
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These are called a quasi-uniform grid in   ;   
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An example of such a network on the line is the so-called tangential grid 

with the nodal points 
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As in [3] a grid approximation of derivatives on an infinite field of quasi-

uniform grid is given. In this case, for derivatives I and II order obtain 
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And for the approximation of the derivative of the third order will have 
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Note that these approximations when 1 Nn  are unsuitable because the 

denominator we obtain in this case, to set correct boundary conditions is not 

possible. Therefore it is necessary to build an approximation, which does not 

contain a nodal point  NT , but has N . To do this, instead of formulas (11)-(13) 

can be as in [3] to approximate fractional derivatives nodal points. Then, instead 

of (11) - (13) we have 
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 Here 
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where 
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For sand medium we have 
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 which was considered in [5,6]. 
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